返回

巅峰学霸

报错
关灯
护眼
第143章 你要能完成,贡献比牛顿更大!
书签 上一页 目录 下一页 书架

在乔喻打算构造的这套公理体系下,可以说任意一个数字,就是一个集合,任意一种运算,都能涵盖所有方向,并将数学从某种意义上说统一起来。

很抽象,但是灵活到让人发指!现实意义甚至比朗兰兹纲领要更大。

举一个最简单的例子:1+1=?

这个数学题随便让一个上过幼儿园的孩子,都能清晰说出答案。

但如果在乔喻设计的这套公理体系下,因为N(1)={N_α,β(1)∣(α,β)∈所有模态空间},N(2)={N_α,β(2)∣(α,β)∈所有模态空间}。

所以这个等式就成了:N_α,β(1)⊕α,βN_α,β(1)=N_α,β(2)

如果带入模态参数,那么还能变形为:N_α,β(1)⊕α,βN_α,β(1)=N_α,β(2+δα,β)

一旦在周期性的模态空间中,还能得出N_α,β(1)⊕α,βN_α,β(1)=N_α,β(0)的结论。

因为这代表著1+1会回到「零」的模态值,形成模态空间中的闭合结构。

等等……

所以如果一定要给1+1在这套公理体系下一个通解,那就是:N(1+1)={N_α,β(1)⊕α,βN_α,β(1)∣(α,β)∈所有模态空间}

让普通人来看,显然这是把简单的问题搞复杂了。

但对于一个数学家,尤其是一个研究数论的数学家而言,只感觉这特么的太灵活了!

不同的表达式直接代表著不同的层级结构,以及数学家想要赋予其的意义。

这意味著未来论文中,不需要再去自定义一堆赋予其特别意义的数学符号,把所有的数学构造都统合了起来。

要知道在传统的数论研究中,很多时候作者为了表达一个具体现象或问题,就不得不为特定结构自定义一套符号或定义,既增加了理解的难度,也不利于普遍推广。

没办法,传统的数学分析就是这么玩的。还有一个好听的名字,叫自定义框架。

但如果乔喻真能把这个框架做出来,就意味著为数论,甚至未来的代数几何研究,定义了一个高度灵活且统一的数学语言。

大家不需要在为某一个的问题去重新设计一套符号,只要从这个大框架中选择合适的表达式就够了!

这玩意儿能不能解决孪生素数猜想甚至都已经不重要了,因为这框架要是真做出来,并

书签 上一页 目录 下一页 书架